All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and edit-
ing as received from the authors: posting the manuscript to SCIS 2006 does not

prevent future submissions to any journals or conferences with proceedings.

SCIS 2006 The 2006 Symposium on
Cryptography and Information Security
Hiroshima, Japan, Jan. 17-20, 2006
The Institute of Electronics,
Information and Communication Engineers

A User-Friendly Implementation of PSEC-KEM and ECDSA on the
Windows Environment

I
Wei-Tsung Chang

PR
Chung-Huang Yang

Abstract— PSEC-KEM key encapsulation mechanism is based on the elliptic curve cryptography,

in which is developed by the NTT company in Japan can utilize for key agreement schemes. Due to
the fact that implementation modules of PSEC-KEM provided by the official source of NTT only
support command mode operation, in this research, we developed a user-friendly implementation

of PSEC-KEM on the Windows environment, and use the keypair generation function of
PSEC-KEM for our ECDSA implementation. In generating and verifying ECDSA digital signature,
we use SHA-2 hash algorithm to compute the message digest of input message. Our software is

created with Borland C++Builder 6 and it allows the user to choose optionally using Java Card as

the medium for key storage. The user may regard the Java Card as a keyring, it may store both

user’s public key and private key, and other people’s public keys, this may improve the security of

key use and management.

Keywords: Elliptic Curve Cryptography, PSEC-KEM, Digital Signature, ECDSA, Java Card

1 Introduction

In 1999, NTT developed the public key encryption
called PSEC (Provably Secure Elliptic Curve
encryption) based on the elliptic curve discrete
logarithm problem. Subsequently, the framework
called the key encapsulation mechanism KEM was
proposed as a delivery method for secret keys used in
symmetric key encryption such as AES. The
corresponding form called PSEC-KEM was developed
in 2001. The development and application of
PSEC-KEM is always devoted to standardization, and
was selected by the NESSIE (New European Schemes
for Signatures, Integrity, and Encryption) project of
European Union and the CRYPTREC (Cryptography
Research and Evaluation Committees) project of
Japan in 2003. Afterward, in 2005, PSEC-KEM was
certified as the IETF standard cipher for RFC4051 [1].

In this research, we developed a user-friendly
implementation of PSEC-KEM on the Windows
environment integrating the source code of
PSEC-KEM, and it is created with Borland

* Institute of Information and Computer Education, National
Kaohsiung Normal University, 116, Ho Ping First Road,
Kaohsiung 802, TATWAN.

! Email: wtcem@hotmail.com.

2 Web: http//crypto.nknu.edu.tw/, Email: chyang@computer.org.

C++Builder 6 [2]. The software may facilitate the
person who wants to understand PSEC-KEM easily.
One of the applications of elliptic curve
cryptography (ECC) is digital signature. PSEC-KEM
provided the ECC public key and private key
generation function, so we use the keypair generation
function for our ECDSA (Elliptic Curve Digital
Signature Algorithm) implementation to generate the
ECC keypair for generation and verification of
ECDSA digital signature. The software allows the
user to choose ECC parameters which are suggested
by the ECDSA standards such as FIPS PUB 186-2 [3]
or ANSI X9.62 [4] for the keypair generation function.
Furthermore, most of ECDSA digital signature
implementation uses SHA-1 hash algorithm to
compute the message digest of input message, but
NIST(National Institute of Standards and Technology
of the U.S. Department of Commerce) announced that
SHA-1 will be phased out in 2010 [5]. Therefore, in
generating and verifying ECDSA digital signature, we
use the newer SHA-2 hash algorithm (which contains
SHA-256, SHA-384 and SHA-512 sub-algorithms) [6]
and integrate SHA-2 source code of GnuPG [7] into
the software.
The software also integrates smart card technology.
Smart cards are very useful in the areas of personal

security, and they can be used to add authentication
and secure access to information systems that require
a high level of security and stored information is
portable [8]. The software allows the user to choose
optionally using Java Card as the medium for key
storage. The user may regard the Java Card as a
keyring, it may store and retrieve both user’s keypair
and other people’s public keys, and this may improve
the security of key use and management.

2 Implementation of PSEC-KEM on the
Windows Environment
There are three mainly functions in PSEC-KEM:
ECC keypair generation, public key encapsulation

(encryption) and decapsulation (decryption). Figure 1
displays the main form of the software.

i An User-Friendly Implementation of PSEC-KEM and ECDSA on the Winds . o 1|

Keys PSEC-KEM Signstore Options
" ’ I 5 ﬂ" 5
A e Keypi L&) ey EnDeenmt H Signerify Operations ﬁ Optinns

ECC Keyring

Type [Hame | il | Fingerprint Location

Keypair Wei-Tsung Chang ug@icemsil mu.edu.tw EBGDFUTCEZ.. Java Cord

Keypsir Wei-Tsung Chang wicem@hotmail com 3139 BDAd A1 Computer

Publickey Chung-Humeg Vang chysng@omputer.org G44C 6474 BE7... Computer
[Welrome [Tava. Can inserted

Figure 1: Main form

When the software starts, it could detect ECC keys
(including user’s keypairs and other people’s public
keys) which were stored in computer and display
them in the ECC keyring list of the main form. If user
uses the Java Card, the software could retrieve the
keys from the card and put them on the ECC keyring
form and refresh the form. ECC keys could be
imported/exported from computer to the Java Card
according to user's requirements, and contrariwise.
When user add, edit, delete, import or export keys, the
software would refresh the ECC keyring list.

Figure 2 shows the new keypair form which
contains the following required fields: a. Name - This
is the first and last name of the user. b. Email - The
e-mail address of the user. c. Passphrase - The
passphrase which protects the user’s private key of
the new keypair, and we use the AES (AES-128)
symmetric encryption algorithm to protect the private
key. Moreover, we provided 15 choice of curve (P-XXX

means the elliptic curve on prime field, and B-XXX or
K-XXX means the elliptic curve on binary field)
suggested by the FIPS PUB 186-2 document. The
software allows the user to choose optionally using
Java Card as the medium for key storage (the card
must be inserted and verified successfully), or save
keys in computer.

New
—Choice of Curve:

Name:

[Wei- Tsung Chang P10 B-163 K-163

il Pl BB K233

|bug@icemajl.nknu.edu.tw

Pttt Do prsplss: " P-156 " B-283 (" K-283

I**********

" P-384 B-409 K-409
Confirm passphrase:
|********** " P-521 C B-511 CKE-5N
Crenerate | Save | Save To Java Card | Cancel
|T(ey'paj:r generated. successfully but not saved.
Figure 2: Add a new keypair

=loyx|

Public key:

Wei- Trung Chang <bug@icemal akan.edv.tvs (ECDSA /F-192) =]
Message:

= Ox2fod 52485 260 bboaataddb JsEE0Tbb 14ce 1 bEZ3 -

H = 0377348033631 a020826 71 b7 3bae] E09508535a20b 16 b 16c

3603 £02ad6f1$¢t40sb 341 04eaBb5 74015035 P ebalB 54 TcBa5 410

24446 bEaB503 56605447846 7026

alpha = 060082304154 750b2012408.5401 £8550994954027

k= D 104aBb5 749550257 0eball6 54 7682541 2444eD6a85035e

05447845 702f=

Clx= 064131 307847

Cly = 0335d0c Jascc2 HchdeD6IIZbb 002806950 3120

ey E Encrypt & Save | Cancel |

Figure 3: PSEC-KEM Public key encryption

g = |

Enerypt Deciypt |

Keypair

[Wei-Tsung Chang <bug@icemad nkan.edu.bw> (ECDSA /P-192) =]

Encrypted publis key fils

[pubkey vt ena E
Decrypt & Save | (" Cancel |

Figure 4: PSEC-KEM Public key decryption

Figure 3 shows the public key encryption function of
PSEC-KEM on the Windows environment. The user
just choose a public key which displayed by Public key
combo box (identified by user information which
including name and email), and then press the
Encrypt & Save button to encrypt the public key
chosen by the user and save the output as a file. The

related messages of the public key encryption process
would show in the Message memo box. And if the user
would like to decrypt the encrypted public key, he only
needs to open the encrypted public key file and
choosing the keypair including the original public key
as shown in Figure 4.

3 ECDSA Implementation

In this research, we use the keypair generation
function of PSEC-KEM for ECDSA implementation to
develop ECDSA signature generation/verification
functions. The keypairs used in ECDSA signature
generation/verification are displayed in the ECC
keyring list of the main form as shown in Figure 1.

N e |

Sign |Venfy | Messags Logs |

D Testilez bt
DATestfile? doc
DiATestfiled doc
DiATestile5 s

Browse... | Select AL | Bign | Caneel |

Figure 5: ECDSA signature generation

N e |

Sign Ferify | biessage logs |

Fileains |
[FDATestiilel doc.ecsig

DA Testfiled tet ecsig

[DATestfile3 o

[D:\Testfiled doc

[FDATestiile5 s

Browse... | Select AL | Verify | Caneel |

Figure 6: ECDSA signature verification

Figure 5 shows the ECDSA signature generation
form. The user may browse and select files, and
choose a private key which displayed by Signing key
combo box to sign ECDSA signatures. The software
saves signature file as .ecsig (detached ECDSA
signature file which is commonly used). Moreover, if
the user would like to verify ECDSA signatures, only

need to choose .ecsig files as shown in Figure 6.

4 Conclusion

Although PSEC-KEM mainly utilized for key
agreement schemes, it has very good flexibility on the
ECC keypair generation function. Therefore, we not
only created a wuserfriendly implementation of
PSEC-KEM on the Windows environment, but also
use the keypair generation function of PSEC-KEM for
our ECDSA implementation integrating Java Card,
and this may be considered as an expansion
application of PSEC-KEM.

References

[1] NTT corporation, PSEC-KEM, http://info.isl.ntt.co.
jplcrypt/eng/psec/index.html.

[2] Borland software corporation, C++Builder, http:/
www.borland.com/us/products/cbuilder/index.html.

[3] NIST, FIPS 1862, ‘“Digital Signature Standard”,
http://csrc.nist.gov/publications/fips/fips186-2/fips
186-2-changel.pdf, 2001.

[4] ANSIX9.62, Public Key Cryptography for the
Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm(ECDSA) , 1998.

[5] NIST, NIST Brief Comments on Recent Cryptanal-
ytic Attacks on SHA-1, http/csrc.nist.gov/hash_-
standards_comments.pdf, 2005.

[6] NIST, FIPS PUB 180-2, “Secure Hash Standard",
http://csre.nist.gov/publications/fips/fips180-2/fips
180-2withchangenotice.pdf, 2002.

[7] The GnuPG project, http:/www.gnupg.org/.

[8] C.E. Ortiz, “An Introduction to Java Card Technolo-
gy”, http://developers.sun.com/techtopics/mobility/
javacard/articles/javacardl/, 2003.

